

EFFECTIVENESS OF NANOMATERIAL OF MAGNESIUM OXIDE, LOCALLY MANUFACTURED, IN ADSORPTION OF AFLATOXIN B₁ IN NATURALLY CONTAMINATED YELLOW MAIZE IN BAGHDAD

Eman Abbass Al-Qaisy

Directorate General of Vocational Education, Ministry of Education, Iraq

Abstract

In this study, thirty–five samples of yellow maize grain were collected from Iraqi local markets in Baghdad for detection of the contamination Aflatoxin B_1 (AFB₁). Results of Enzyme – Linked Immuno Sorbent Assay (ELISA) was indicated to contamination of all samples with AFB₁ at various levels. Three concentrations of nanomaterial Magnesium Oxide (Nano-Mgo), locally manufactured, (0.1, 0.3, 0.5 gm/100 ml distilled water) were tested for adsorption of AFB₁ in vitro. Results were showed that Nano-MgO has a high adsorption capacity for AFB₁. Reduction ratios were reduced according to increasing concentrations of AFB₁ while it was increased by increasing the concentration of Nano-MgO. *Keywords*: Magnesium Oxide, Aflatoxin B1, Yellow Maize

Introduction

Aflatoxins (AFs), including AFB₁ are the most important and dangerous mycotoxins. AFB₁ is the leading cause of the liver cancer in both of human and animal, renal failure, neurotoxicity (Atroshi et al., 2001), and weak immune system (Richard, 2007). Many of methods were used in reducing and destroying of mycotoxin such as biological, chemical and physical methods. Recently, nanotechnology has been widely used in many scientific researches in various fields of life. This technique deals with the matter at the level of atoms and molecules and has distinct physical and chemical properties, therefore, it has a vital role in applying them in medical, industrial and agricultural fields (Huy et al., 2011; Fakkruddin et al., 2013). Many studies have been shown that Nano-MgO can be used to inhibitio bacterial and fungal growth (Tany and LV, 2013; Falah and Halima, 2016) and also used as adsorption agents for mycotoxins including

AFs (Lange and Obendorf, 2012; Hekmati *et al.*, 2010). The objectives of the study are:

- 1. Detection of contamination of maize grain collected from the local markets of Baghdad with AFB₁.
- 2. Estimation of AFB₁ by ELISA test.
- 3. Testing efficacy of Nano-MgO, locally manufactured, in adsorption of AFB₁ in maize grain in vitro.

Materials and Methods

Characterization of Nano-MgO locally manufactured by Al-Qaisy, 2015, (in partial fulfillment of the requirements for the degree of doctor of philosophy in Agriculture Science Plant Protection/Plant Diseases (mycotoxins)) College of Agriculture / University of Baghdad according to the method of Ding *et al.*, 2001, at size: 58.66 nm and density: 0.18 gm/cm³.

Fig. 1: Stages of Manufactured Nano-MgO according to Ding et al. (2001)

Eman Abbass Al-Qaisy

Fig. 2 : Size of Nano-MgO (locally manufactured) by Atomic Force Microscope (AFM) according to method by Ding *et al.* (2001)

Collection of Samples :

A 35 samples of maize grain were collected from some local Iraqi markets, included area of A-Rasheed, Abu Ghraib, Jamila, Al-Alawi, Bayaa, and College of Agriculture/ University of Baghdad, at a rate 5kg per sample. Theses samples were kept in plastic cans (with writing number, location and data for each sample) and kept at a temperature of

(-4)°C until the required tests.

Determination of moisture content of maize grain :

Moisture content was determined in a 100 gm for each sample of maize grain by a humidifier.

Preparation of Samples :

Samples of maize grain was weighted at 25 gm for each sample and placed in an oven at a temperature of 105°C for 5 hours to dry and avoid fungal growth and then grinded well and kept at a temperature -4°C until the extraction process.

Extraction and quantitative estimation of AFB₁ in maize grain samples by ELISA test :

 AFB_1 was extracted from ground corn samples using ethanol and distilled water (20% : 80%). AFB_1 was measured by Enzyme – Linked Immuno Sorbent Assay (ELISA).

$\label{eq:preparation} Preparation of AFB_1 \ titers \ and \ mixing \ with \ ground \ corn:$

Eleven titers (7 - 2500) ppb of AFB₁ extraction were prepared by using ethanol (95%). 1 ml from each of 11 test tubes containing 1 gm of non-contaminated ground corn, which was obtained from silo in Baghdad, and mixed together (three replicates for each dilution). These tubes were incubated at room temperature 25°C for 30 minutes to allow of AFB₁ to absorption by the ground corn. Another series tubes were left without adding of AFB₁. All these tubes were used in the following experiment.

Testing efficacy of Nano-MgO, locally manufactured, in adsorption of AFB₁ in ground corn :

This experiment included two separate tests to evaluate an efficacy of Nano-MgO, locally manufactured, for adsorption of AFB_1 as following:

(A) The first test (Using one conc. of Nano-MgO) :

In this test 1 ml of Nano-MgO (0.5 g/100 ml distilled water) was added to only 10 tubes, containing ground corn with AFB₁ (7-2000) ppb, and shook for 30 minutes to increasing its ability for adsorption of AFB₁. A same series of tubes (10 tubes) containing ground corn with AFB₁ (7 – 2000) ppb but without adding Nano – MgO as a positive control treatment, and another test tubes containing ground corn with Nano-MgO but without AFB₁, as a negative control treatment. Later AFB₁ was extracted and determined by ELISA.

Effectiveness of nanomaterial of magnesium oxide, locally manufactured, in adsorption of aflatoxin B1 in naturally contaminated yellow maize in Baghdad

(B) The second test :

Three concentrations of Nano-MgO (0.1, 0.3, 0.5 gm / 100 ml distilled water) were tested for adsorption of AFB₁ at 2500 ppb. 1 ml of each conc. was added to each of the tubes containing ground corn with AFB₁. The same series of tubes containing ground corn with AFB₁ (2500) ppb but without adding Nano-MgO as a positive control treatment and left another series tubes containing ground corn with Nano-MgO but without AFB₁ as a negative control treatment. Saline solution (10gm of NaCl/1L distilled water) was added for three times to all these tubes (in both of test A and B), which containing of Nano-MgO, and then these tubes were placed in the centrifuge to separate and discarded the supernatant and then was added 1ml of distilled water to each of these tubes and later AFB₁ was extracted and estimated by ELISA.

Results and Discussion

Results of the quantitative estimation of AFB_1 were showed that all the samples of yellow maize contaminated with various levels of AFB_1 (Table 1). AFB_1 Levels were ranged between lowest level at 2.9 mg/kg (ppm) in sample (12) and highest level at 9.72 mg/kg (ppm) in sample (4). The contamination of maize with AFB_1 may be due to presence of the fungus (*A. flavus*) naturally in the soil (Cotty, Tucson, 2009). And the difference in the levels of AFB_1 may be due to difference of genetic susceptibility of *A. flavus* isolates (Amin *et al.*, 2009; Reddy *et al.*, 2009), and also may to the various of severity of field infection and the lack of suitable storage conditions were affected in the levels of AFB₁ (Kumar *et al.*, 2008; Kabak, 2009).

These results were compatible with that of Brown et al., (2010) that maize crop is one of the most crops susceptible to be contaminated with aflatoxin. Also results in table 2 indicated to the high efficiency of Nano-MgO at a conc. of 0.005 g/ml in adsorption and reduction of AFB₁ at various levels from 5 – 2000 ppb. Reduction ratios of AFB_1 were ranged between a highest ratio 100% for each level from 7 -500 ppb and a lowest ratio 69% at 2000 ppb, and this may results to owing of the Nano-MgO a high interactive surface to adsorption of AFB₁, but the reduction ratios were reduced when increasing the levels of AFB₁ because the interactive surface of Nano-MgO was reached to saturation level (Shi et al., 2006; Fandi, Yih, 2006). And this results was agreed with a study by Hekmati et al. (2010) about using of MgO-SiO₂ nanocomposite at 100 g/L for adsorption and reduction of different levels of aflatoxin (AF) in wheat flour. Results in table 3 were showed that the reduction ratios of AFB₁ were increased with increasing of concentrations of Nano-MgO, obviously that was due to increasing of the effectiveness of surface area of Nano-MgO for adsorption of AFB₁.

Table 1 : Levels of aflatoxin B1 in naturally contaminated corn samples and its moisture content.

Sample number	Sample Site	Moisture content of	Level of AFB ₁
Sample number		samples %	mg / kg (ppm)
1	Al-Rashid	15.2	6.2
2	Jamila	15.9	8
3	Al-Rashid	17.3	5.6
4	Al-Baiaa	18.3	9.72
5	College of Agriculture	15.6	3.1
6	Al-Baiaa	17.2	7.4
7	Al-Rashid	18.6	4
8	College of Agriculture	16.5	9.1
9	Allawi	18.4	6.6
10	Allawi	16.6	8
11	Al-Rashid	15.8	9.4
12	Allawi	15.3	2.9
13	Jamila	18.5	5
14	Allawi	17.1	8.6
15	Al-Rashid	15.4	7.2
16	Al-Baiaa	18.2	9
17	Al-Baiaa	16.3	7.8
18	Al-Rashid	15.5	5.6
19	College of Agriculture	17.4	7.3
20	College of Agriculture	15.7	3
21	Al-Baiaa	16.2	4.5
22	Al-Baiaa	18.1	3.6
23	Al-Baiaa	17.5	3.6
24	Al-Rashid	16.3	4.2
25	Jamila	16.7	6.0
26	Jamila	18.1	4
27	College of Agriculture	17.7	6.2
28	Al-Baiaa	16.4	3.1
29	Allawi	16.6	5.8
30	Al-Baiaa	15.8	4.2
31	Al-Baiaa	17.5	5
32	Al-Rashid	17.2	7.3

33	Jamila	15.6	4.5
34	Al-Rashid	17.2	6.1
35	Allawi	15.6	7.6

Table 2 • Reduction ratios of aflatoxin B.	in naturally	v contaminated	corn by using	a concentration	of Nano-I	ΜσΟ
Table 2 . Reduction ratios of analoxin D_1	III IIaturaii	y containnateu	com by using	a concentration	of mano-	wigO.

	1 2	5	0	U
Treatment Number	AFB_1 level before	Nano-MgO conc.	AFB ₁ level after	Reduction ratios
	adsorption	gm/ml	adsorption (ppb)	%
	(ppb)			
T1	7, 15, 25, 50,	0	7, 15, 25, 50, 75, 100,	
(Positive Control)	75, 100, 250, 500, 1000,		250, 500, 1000, 1500,	
	1500, 2000		2000	
T2	7	0.005	0	100
T3	15	0.005	0	100
T4	25	0.005	0	100
T5	50	0.005	1.2	97.6
T6	75	0.005	2.5	96.6
T7	100	0.005	3.7	96.3
T8	250	0.005	32.4	87.4
Т9	500	0.005	81.8	83.6
T10	1000	0.005	229.6	77
T11	1500	0.005	431.2	71.25
T12	2000	0.005	620	69
T13	0	0.005	0	
(Negative Control)				

• Results of an analysis rate for three replicates.

Reduction percentage

Fig. 3 : Reduction ratio of aflatoxin B₁ in naturally contaminated corn by using a concentration of Nano-MgO

Table 3 : Reduction ratios of aflatoxin B	in naturall	v contaminated corn b	v using three	concentrations of	Nano-MgO
Tuble e Theude tion Tubles of unatomin B	1 III IIacarai		y asing anec	concentrations of	i funo mgo

Treatment Number	AFB ₁ level Before adsorption (ppb)	Nano-MgO conc. gm/ml	AFB ₁ level After adsorption (ppb)	Reduction ratios %
T1 (Positive Control)	2500	0	2500	
T2	2500	0.001	2113	29.6
T3	2500	0.003	1632.2	45.6
T4	2500	0.005	852.3	65.9
T5	0	0.001, 0.003	0	
(Negative Control)	0	0.005	0	

* Results of an analysis rate for three replicates.

Reduction percentage

Fig. 4: Reduction ratios of aflatoxin B₁ in naturally contaminated corn by using three concentrations of Nano-MgO

References

- Amin, O.; Elzupir; Suzan, Makawi, Z.A. and Abdelrahman, E.M. 2009. Determination of aflatoxin and ochratoxin A in dairy cattle feed and milk in Wad Medani , Sudan . Journal of Animal and Veterinary Advances., 8 (12) : 2508-2511.
- Atroshi, F.; Rizzo A.; Tuomas Westermarck, T. and Ali– Vehmas, T. (2002). Antioxidant nutrients and mycotoxins, Toxicology, 180 : 151-167.
- Brown, R.L.; Zhi–Yuan, C.; Marilyn, W.; Meng, L.; Abebe, M.; Ahmed, F.; Deepak, B. (2010). Discovery and Characterization of Proteins Associated with Aflatoxin – Resistance : Evaluating their Potential as Breeding Markers. Toxins, (2): 919 – 923.
- Fakruddin, Md, Hossain, Z. and Afroz, H. (2013). Prospects and applications of nanobiotechnology: a medical perpective. J. Nanobiotechnol, 10: 31.
- Falah Abdul–Hasan and Halima Z. Hussein (2016). Evaluation of Antifungal Effect of Nanoparticles (Magnesium Oxide, Silver) and Chemical (Phylax) on *Fusarium solani* f. sp Cucurbita, Pathogenic Agent of Melon. International Journal of Agriculture Innovations and Research. 5(2): 2319-1473.
- Jo, Y.K.; Kim B.H. and Jung G. (2009). Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 93: 1037-1043.

- Kabak, B. and Dobson, A.D. (2009). Biological strategies to counteract the effects of mycotoxins. Journal of Food Production, 72: 2006-2016.
- Kumar, O. and Rai, T. (2008). Nanotechnology in milk and its products Indian Dairyman, 37-40.
- Le, A.T.; Huy, P.T.; Tam, P.D.; Hieu, N. and Huy, T. (2011). Novel Silver Nanoparticles : Synthesis, Properties and Applications. International Journal of Nanotechnology, 8: 278-290.
- Reddy, K.R.N.; Abbas, H.K.; Abel, C.A.; Shier, W.T.; Oliveira, C.A.F. and Raghavender, C.R. (2009). Mycotoxin contamination of commercially important agricultural commodities. Toxin Reviews, 28(2-3): 154-168.
- Richard, J.L. (2007). Some major mycotoxins and their mycotoxicoses–An overview. International Journal of Food Microbiology, 199: 3-10.
- Tang, Z.-X. and L.V., B.-F. (2013) MgO Nanoparticles as Antibacterial Agent Preparation and Activity. Brazilian Journal of Chemical Engineering, 31: 591–601.
- Tucson, A.Z. and Cotty, P.J. (2006). Crop rotation influences aflatoxin producing potential of *Aseprgillus* communities in South Texas : Beltwide Cotton Conferences, San Antionio, Texas, 3(6): 60-64.